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Abstract

We set up a general framework to describe ππ scattering below 1 GeV based

on chiral low-energy expansion with possible spin-0 and 1 resonances. Partial

wave amplitudes are obtained with the N/D method, which satisfy unitarity,

analyticity and approximate crossing symmetry. Comparison with the phase

shift data in the J = 0 channel favors a scalar resonance near the ρ mass.
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I. INTRODUCTION

Although Quantum Chromodynamics has long been accepted as the fundamental theory
of the strong interaction, the spectrum of hadrons composed of light quarks still poses many
unanswered questions. Even below 1 GeV, the old controversy on the existence of the σ
meson, an isospin-0 scalar boson strongly coupled to the ππ system, remains unanswered.
Recently, there have been some renewed interests in this problem both theoretically [1–11]
and experimentally [12–14]. Some analyses favor the existence of σ. The particle reappeared
in the 1996 edition of “Review of Particle Physics” (Particle Data Book) [15] as “f0(400–
1200) or σ” after an absence for more than two decades, though it is cautiously stated that
“the interpretation of this entry as a particle is controversial.” There is no good agreement
on its mass among the recent studies. For example, Törnqvist and Roos [7] have used
a “unitarized quark model” to fit the meson-meson S wave amplitudes and claimed the
existence of a very broad σ with a mass of ∼860 MeV. Ishida et al. [11] fit the ππ S wave
amplitudes to an S matrix model and find the σ mass of 585 ± 20 MeV. Although these
results seem conclusive within their frameworks, the disagreement of the derived σ mass
may imply that quantitative conclusions are quite model dependent, casting some doubt in
the very existence of σ. In any case, it is not easy to assess how model-independent are their
conclusions.

In this paper, we look at this problem from a somewhat different point of view. We
try to minimize the necessary model assumptions by a simple approach which only assumes
the chiral flavor symmetry and general constraints on the amplitudes such as analyticity,
unitarity, and crossing symmetry. We notice that crossing symmetry is not taken into
account in the recent works discussed above.

As we put more emphasis on theoretical transparency than aiming at a perfect fit to the
data, we concentrate on ππ scattering below 1 GeV and work in the chiral limit with massless
pions. Since the pions are the Goldstone bosons of the spontaneously broken SU(2)×SU(2)
symmetry, the form of the pion interactions is tightly constrained at low energies by the
symmetry. If we expand the ππ elastic scattering amplitude around s = t = 0, chiral
symmetry demands the amplitude vanishes at s = t = 0 and the linear terms in s, t are
determined in terms of the pion decay constant fπ. These and terms in higher order in s, t
can be described systematically if one uses the machinery of the chiral Lagrangian.

Although this expansion around the origin gives a good description of the amplitude
at low energies, it breaks down when one approaches the mass of the lowest-lying hadrons
(resonances) other than pions. These resonances manifest themselves as a pole on the
second sheet in the scattering amplitude. We are thus led to start with a simple form of the
amplitude which has relevant poles (corresponding to possible spin-0 isospin-0 σ and spin-1
isospin-1 ρ resonances) and has the behavior consistent with chiral symmetry (low energy
theorem).

If there is a resonance in the s channel, the same resonance is also exchanged in the t and
u channels because of crossing symmetry. In a study of strongly interacting Higgs sector [16]
we found that the crossed-channel exchange of a vector resonance has a large reflection in
the J = 0 partial wave. In most of the recent model studies of the σ meson, this effect is
not explicitly taken into consideration. It is one of the motivations of this work to assess
the importance of the crossed channel ρ exchange in the scalar channel.
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As we are concerned with the strong interaction, the amplitude constructed in this way
tend to violate unitarity near the pole. To obtain a unitary amplitude, we first project to
partial waves (we will be concerned with J = 0 and J = 1 channels), and use the N/D
method to unitarize the partial wave amplitudes. This method gives amplitudes which has
the correct analytic properties with cuts on the real axis. In this respect, it is superior to
the K matrix or Padé unitarization scheme. Although the procedure is not exactly crossing
symmetric, the deviation from the symmetry is controlled and mostly limited to the region
near the pole.

In Section 2, we summarize the general characteristics of the ππ elastic scattering ampli-
tude and set up our chirally symmetric ‘model-independent’ amplitude with possible poles.
Two simple cases, ‘no σ’ and ‘degenerate ρ–σ’ are discussed in detail. In Section 3, we
calculate the partial wave amplitudes from the invariant amplitudes in Section 2. Unita-
rization of the amplitudes is performed using the N/D method. Relation of our method
to the low-energy chiral expansion is clarified in Section 4. In Section 5, we determine the
parameters in the amplitudes and compare them with the phase shift data. We summarize
and conclude with some remarks in Section 6.

II. CHARACTERISTICS OF ππ AMPLITUDE

The ππ system has three independent isospin channels. In terms of Mandelstam vari-
ables, the invariant amplitude for the process πi + πj → πk + πℓ has the form

Mijkℓ(s, t) = A(s, t)δijδkℓ + A(t, s)δikδjℓ + A(u, t)δiℓδjk , (2.1)

where i, j, . . . = 1, 2, 3 are isospin indices (with π± = (π1±iπ2)/
√

2, π0 = π3). The variable
s is the c.m. energy squared, t = −s(1−cos θ)/2 and u = −s(1+cos θ)/2 with cos θ denoting
the c.m. scattering angle. Note that s+ t+u = 0. There is only one analytic function A(s, t)
because of crossing symmetry. It satisfies A(s, t) = A(s, u) due to Bose symmetry. The last
term in (2.1) thus may be rewritten as A(u, s)δiℓδjk.

Chiral symmetry low energy theorem demands that A behaves near s = t = 0 as

A(s, t) =
s

f 2
π

+ O(s2, st, t2) , (2.2)

where fπ ≈ 93 MeV is the pion decay constant. The structure of the second term will be
discussed later.

The expansion breaks down by the existence of a resonance. We expect that possible
lowest-lying resonances are in I = J = 0 and I = J = 1 channels. In the narrow width
approximation, the contribution of these resonances may be written

A(s, t) =
g2

σs

m2
σ − s

(2.3)

for the scalar exchange (we write s in the numerator instead of a constant, to be consistent
with the low energy theorem. This corresponds to adding a contact interaction like that in
the σ model) and
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A(s, t) = g2
ρ

(

s − u

m2
ρ − t

+
s − t

m2
ρ − u

)

(2.4)

for the vector exchange (the numerator is the minimal dependence to assure spin 1 and has
the same form as the gauge boson exchange).

The tail of these exchange amplitude contributes to the slope of the amplitude at the
origin. If we assume that these two resonances saturate the low energy theorem, we find

g2
σ

m2
σ

+
3g2

ρ

m2
ρ

=
1

f 2
π

. (2.5)

This condition, applied to the electroweak symmetry breaking, has been used in our previous
study of the strong WW scattering [16], in which we have obtained partial wave amplitudes
consistent with unitarity and analyticity. For hadron physics, it turns out that the condition
is too strong to explain the observed width of the ρ meson. Even if one maximizes the vector
coupling and includes the enhancing effect of unitarization, the resulting width is too small
by ∼ 20%. Thus we are led to relax the condition (2.5) to increase the ρππ coupling gρ.
This may be done by subtracting the O(s) part from the exchange amplitudes and add a
suitable O(s) term to A(s, t) instead. This procedure gives

A(s, t) =
s

f 2
π

+
g2

σs
2

m2
σ(m2

σ − s)
+

g2
ρ

m2
ρ

(

t(s − u)

m2
ρ − t

+
u(s − t)

m2
ρ − u

)

. (2.6)

At the lowest order, the ρ width may be reproduced if one takes gρ around the KSRF
value [17] g2

ρ = m2
ρ/2f 2

π . The price to pay is the worse high energy behavior.
Expanding (2.6) to second order, we have

A(s, t) ≃ s

f 2
π

+
g2

σs2

m4
σ

+
g2

ρ

m4
ρ

(−2s2 + t2 + u2) . (2.7)

This will be used later in matching with chiral Lagrangian.
To assess the possible existence of σ, we will compare the two cases (1) no σ (ρ only)

and (2) degenerate ρ–σ. We now discuss motivations for these choices.
(1) No σ meson: In the nonrelativistic quark model, the lowest-lying S wave mesons are

pseudoscalar (π, η) and vector (ρ, ω). Scalar mesons are P wave states and are expected to
have similar masses as the other P wave states, the axial vector and tensor mesons which lie
in the 1200–1300 MeV range. As we will be concerned with the scattering amplitude below
1 GeV, such mesons in this mass range have small effect and we can simply take gσ = 0 to
illustrate this case. We may recall that the pion electromagnetic form factor is rather well
described [18] by the hypothesis of ρ dominance. The coupling of ρ to pions given by the
KSRF relation [17]

g2
ρ =

m2
ρ

2f 2
π

(2.8)

reproduces the ρ width quite well.
(2) Degenerate ρ–σ: Since the light quarks are essentially massless compared to the QCD

scale, there is no reason that nonrelativistic quark model reliably describe the spectrum. In
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the string-type picture of hadrons, the spectrum of the states has a tower structure and
the vector meson is accompanied by a scalar daughter. This situation in the narrow width
approximation is realized in the Veneziano amplitude [19].

The degeneracy of ρ and σ is also suggested in the framework of nonlinear realization of
the SU(2)×SU(2) chiral flavor symmetry developed by Weinberg [20]. Algebraization of the
Adler-Weisberger sum rule results in the mass matrix structure with this degeneracy, again
in the narrow width (large Ncolor) limit. The couplings gρ and gσ are found to be equal and
has the same strength as the KSRF coupling

g2
σ = g2

ρ =
m2

ρ

2f 2
π

. (2.9)

The Veneziano amplitude also gives gρ = gσ but the size of the coupling is different, as
we will now discuss. The Veneziano ππ scattering amplitude takes a simpler form for the
charge eigenstates π+π− → π+π−. With the constraints of chiral symmetry, it reads [21]

B4(s, t) = −
2m2

ρ

πf 2
π

Γ((1 − s/m2
ρ)/2)Γ((1 − t/m2

ρ)/2)

Γ(u/2m2
ρ)

. (2.10)

Vanishing of the amplitude at s = t = 0 demands that the intercept of the Regge trajectory
is 1/2, and the overall coefficient is determined by the scale of chiral symmetry breaking fπ.
The invariant amplitude A is related to (2.10) by the relation A(s, t) = [B4(s, t)+B4(s, u)−
B4(t, u)]/2.

As is well known, the amplitude (2.10) has an infinite number of poles both in the s
and t channels. The lowest-lying poles are at s = m2

ρ and t = m2
ρ, at which the amplitude

behaves as

B4(s, t) ∼































2m2
ρ

πf 2
π

m2
ρ + t

m2
ρ − s

(s ∼ m2
ρ),

2m2
ρ

πf 2
π

m2
ρ + s

m2
ρ − t

(t ∼ m2
ρ).

(2.11)

Expanding (2.11) in partial waves, one finds that a scalar and a vector state are degenerate
at mρ. The corresponding couplings are

g2
σ = g2

ρ =
m2

ρ

πf 2
π

. (2.12)

The chiral Veneziano amplitude may be approximated by the form (2.6) with appropriate
couplings and masses in the energy region of our interest, where the higher poles have small
effect.

III. PARTIAL WAVE AMPLITUDES

The invariant amplitude can be expanded in terms of partial waves for states having
definite isospin I:
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aIJ(s) =
1

64π

∫ 1

−1
d cos θ PJ(cos θ)M(I)(s, t) , (3.1)

with t = −s(1 − cos θ)/2 and

M(I=0) = 3A(s, t) + A(t, s) + A(u, s) , (3.2a)

M(I=1) = A(t, s) − A(u, s) , (3.2b)

M(I=2) = A(t, s) + A(u, s) . (3.2c)

Elastic unitarity requires ℑm a−1
IJ (s) = −1 and the amplitude can be written in terms of the

phase shift δIJ as

aIJ = eiδIJ sin δIJ . (3.3)

Inelastic channels (4π, . . .) are known to be negligible below the KK̄ threshold [22,23], in
accordance with the expectation based on chiral symmetry (the ππ → 4π cross section starts
at the order ∼s4/(4πfπ)

8).
We project the subtracted pole amplitude (2.6) into partial waves, which we denote by

a◦
IJ . We find

a◦
00 =

1

16π

[

s

f 2
π

+ g2
σ

(

3
2
fr(s/m

2
σ) + f0σ(s/m2

σ)
)

+ 2g2
ρf0ρ(s/m

2
ρ)

]

, (3.4a)

a◦
20 =

1

16π

[

− s

2f 2
π

+ g2
σf0σ(s/m2

σ) − g2
ρf0ρ(s/m

2
ρ)

]

, (3.4b)

a◦
11 =

1

16π

[

s

6f 2
π

+ g2
σf1σ(s/m2

σ) + g2
ρ

(

1
3
fr(s/m

2
ρ) + f1ρ(s/m

2
ρ)

)

]

, (3.4c)

where

fr(x) =
x2

1 − x
, (3.5a)

f0σ(x) =
1

x
log(1 + x) − 1 +

x

2
, (3.5b)

f0ρ(x) =
(

1

x
+ 2

)

log(1 + x) − 1 − 3

2
x, (3.5c)

f1σ(x) =
1

x

(

2

x
+ 1

)

log(1 + x) − 2

x
− x

6
, (3.5d)

f1ρ(x) =
(

1

x
+ 2

)(

2

x
+ 1

)

log(1 + x) − 2

x
− 4 − x

6
. (3.5e)

These functions may alternatively be obtained from the nα functions defined in [16], Eq. (13)
by subtracting the O(x) term. Near x = 0, these functions behave as

fr(x) ≃ x2, (3.6a)

f0σ(x) ≃ 1

3
x2, (3.6b)

f0ρ(x) ≃ −2

3
x2, (3.6c)

f1σ(x) ≃ −1

6
x2, (3.6d)

f1ρ(x) ≃ 1

6
x2. (3.6e)
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For large values of the couplings, these amplitudes badly violates unitarity near the
resonances. We use the N/D method to obtain amplitudes satisfying elastic unitarity and
analyticity. This method is superior to K matrix or Padé unitarization scheme in that it
automatically provides an amplitude having correct analytic behavior. We thus write

aIJ =
NIJ

DIJ

, (3.7)

and use single N/D iteration by setting NIJ = a◦
IJ (given by (3.4)). The denominator

function is determined by analyticity

ℑm DIJ(s) = −NIJ(s)θ(s) (3.8)

(we assume the contribution of inelastic channels is not important), which symbolically gives

DIJ(s) = −1

π

∫ ∞

0

ds′

s′ − s
NIJ(s′). (3.9)

Since NIJ(s) ∼ s at s → ∞, the dispersion integral has to be subtracted twice. One of the
subraction constants is fixed by the normalization condition DIJ(0) = 1 (remember that our
amplitude a◦

IJ is constructed to be exact near s = 0, which requires this condition), and the
second constant determines the O(s) behavior of DIJ(s) as will be discussed later.

To write down the explicit functional form of D, we define the function dα(x) with the
property

disc dα(x) ≡ dα(x + iǫ) − dα(x − iǫ) = 2πifα(x)θ(x) (3.10)

by

dα(x) + (cα log R + c′α)x = x
∫ R

0

dy

y(y − x)
fα(y) (R → ∞), (3.11)

where we demand dα(x) ∼ x2 near x = 0. This is accomplished by separating the O(x)
term of the integral as the second term in the LHS of (3.11). Though the integral diverges
logarithmically for R → ∞, dα(x) thus defined is finite in this limit. We find

dr(x) = − x2

1 − x
log(−x), (3.12a)

d0σ(x) =
1

x
L(x) +

(

1 − x

2

)

log(−x) − 1 +
x

4
, (3.12b)

d0ρ(x) =
(

1

x
+ 2

)

L(x) +
(

1 +
3

2
x
)

log(−x) − 1 − 7

4
x, (3.12c)

d1σ(x) =
1

x

(

2

x
+ 1

)

L(x) +
(

2

x
+

x

6

)

log(−x) − 2

x
− 1

2
+

x

36
, (3.12d)

d1ρ(x) =
(

1

x
+ 2

)(

2

x
+ 1

)

L(x) +
(

2

x
+ 4 +

x

6

)

log(−x) − 2

x
− 9

2
− 35

36
x, (3.12e)

with

L(x) = −Li2(−x) − log(−x) log(1 + x), (3.13)
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and

cr = −1, c0σ =
1

2
, c0ρ = −3

2
, c1σ = c1ρ = −1

6
, (3.14)

c′r = 0, c′0σ = −1

4
, c′0ρ =

7

4
, c′1σ = − 1

36
, c′1ρ =

35

36
. (3.15)

Then we can write

N00 =
1

16π

[

s

f 2
π

+ g2
σ

(

3
2
fr(s/m

2
σ) + f0σ(s/m2

σ)
)

+ 2g2
ρf0ρ(s/m

2
ρ)

]

, (3.16a)

N20 =
1

16π

[

− s

2f 2
π

+ g2
σf0σ(s/m2

σ) − g2
ρf0ρ(s/m

2
ρ)

]

, (3.16b)

N11 =
1

16π

[

s

6f 2
π

+ g2
σf1σ(s/m2

σ) + g2
ρ

(

1
3
fr(s/m

2
ρ) + f1ρ(s/m

2
ρ)

)

]

, (3.16c)

D00 = 1 − d′
00s −

1

16π2

[

− s

f 2
π

log
(−s

µ2

)

+ g2
σ

(

3
2
dr(s/m

2
σ) + d0σ(s/m2

σ)
)

+ 2g2
ρd0ρ(s/m

2
ρ)

]

, (3.17a)

D20 = 1 − d′
20s +

1

16π2

[

− s

2f 2
π

log
(−s

µ2

)

+ g2
σd0σ(s/m2

σ) − g2
ρd0ρ(s/m

2
ρ)

]

, (3.17b)

D11 = 1 − d′
11s −

1

16π2

[

− s

6f 2
π

log
(−s

µ2

)

+ g2
σd1σ(s/m2

σ) + g2
ρ

(

1
3
dr(s/m

2
ρ) + d1ρ(s/m

2
ρ)

)

]

. (3.17c)

The coefficient d′
IJ corresponds to the second subtraction constant and depends implicitly

on µ, which cancels the explicit µ dependence of the amplitudes.
The N/D unitarization breaks crossing symmetry because it treats the s channel dis-

tinctly from the other channels. The deviation from symmetry is proportional to D − 1,
because the N function is crossing symmetric by construction. Thus our unitarized ampli-
tude is approximately crossing symmetric away from the resonance.

Our procedure apparently gives three independent subtraction constants. However, there
can be at most two independent ones. To see this, we now turn to the discussion of ππ
scattering in the chiral Lagrangian language.

IV. CHIRAL LAGRANGIAN UP TO ∂4
ORDER

Interactions of pions at low energies can be described by the chiral Lagrangian, an
effective Lagrangian with nonlinearly realized chiral symmetry, which is an expansion in
the number of derivatives. The Lagrangian with terms up to the order ∂4 takes the form (in
the exact SU(2) × SU(2) limit we are working)

L = L2 + L4, (4.1)
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L2 =
f 2

π

4
Tr(∂µU

†∂µU), (4.2a)

L4 = L1

[

Tr(∂µU
†∂µU)

]2
+ L2 Tr(∂µU

†∂νU) Tr(∂µU †∂νU), (4.2b)

with

U = exp(iπiτ i/fπ), (4.3)

where πi (i = 1, 2, 3) denotes the pion field and τ i is the Pauli matrix. The parameters in
(4.1) are in principle calculable from QCD, but in practice can be regarded as parameters
to be determined from experiments.

The tree level ππ scattering amplitude derived from the Lagrangian (4.1) is

A(s, t) =
s

f 2
π

+
8s2

f 4
π

L1 +
4(t2 + u2)

f 4
π

L2 . (4.4)

Comparing the tree chiral amplitude (4.4) with the subtracted pole amplitude (2.6), we
identify

L1 =
g2

σf
4
π

8m4
σ

−
g2

ρf
4
π

4m4
ρ

, L2 =
g2

ρf
4
π

4m4
ρ

. (4.5)

It may be seen that the two coefficients reflect the underlying dynamics. The scalar exchange
gives L2 = 0, and the vector exchange is characterized by the relation L1 + L2 = 0. In the
ρ–σ degenerate case with equal couplings, we have 2L1 + L2 = 0.

Independent determination of these parameters have been done using the D wave ππ
phase shift [24] or K → ππℓν decays [25]. These data exclude the case L2 = 0. The other
two cases of ρ only and degenerate ρ–σ are compatible with the data.

At O(s2), the contribution of one-loop graphs with the L2 vertices has to be included:

A(s, t) =
1

16π2f 4
π

{

1

2
s2

[

1

ǫ
− log

(−s

µ2

)

]

+
1

6
t(t − u)

[

1

ǫ
− log

(−t

µ2

)

]

+
1

6
u(u − t)

[

1

ǫ
− log

(−u

µ2

)

]

+
5

9
s2 +

13

18
(t2 + u2)

}

. (4.6)

We have used dimensional regularization with D = 4 − 2ǫ spacetime dimensions. (In the
usual convention, 1/ǫ should be interpreted as 1/ǫ − γE + ln 4π.) Notice that the one-loop
amplitude contains terms required by unitarity and analyticity at O(s2). The logarithmic
divergences can be absorbed into the parameter Li as

Lr
1(µ) = L1 +

1

16π2

1

24

(

1

ǫ
+ 1

)

, (4.7a)

Lr
2(µ) = L2 +

1

16π2

1

12

(

1

ǫ
+ 1

)

, (4.7b)

where we have followed the renormalization prescription of Gasser and Leutwyler [24]. The
amplitude in terms of the renormalized parameters is
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A(s, t) =
s

f 2
π

+
8s2

f 4
π

Lr
1 +

4(t2 + u2)

f 4
π

Lr
2

+
1

16π2f 4
π

[

−1

2
s2 log

(−s

µ2

)

− 1

6
t(t − u) log

(−t

µ2

)

− 1

6
u(u − t) log

(−u

µ2

)

+
2

9
s2 +

7

18
(t2 + u2)

]

. (4.8)

This gives the general form of the amplitude up to order O(s2) compatible with chiral
symmetry. Expanding the O(E4) chiral amplitude (4.8) into partial waves, we find for
J ≤ 1

a00 =
1

16π

{

s

f 2
π

+
s2

f 4
π

[

44

3
Lr

1 +
28

3
Lr

2 +
1

16π2

(

− log
−s

µ2
− 7

18
log

s

µ2
+

17

12

)

]}

, (4.9a)

a20 =
1

32π

{

− s

f 2
π

+
s2

f 4
π

[

16

3
Lr

1 +
32

3
Lr

2 +
1

16π2

(

−1

2
log

−s

µ2
− 11

18
log

s

µ2
+

17

12

)

]}

, (4.9b)

a11 =
1

96π

{

s

f 2
π

+
s2

f 4
π

[

−8Lr
1 + 4Lr

2 +
1

16π2

(

−1

6
log

−s

µ2
+

1

6
log

s

µ2
+

1

9

)

]}

. (4.9c)

Now we are ready to discuss the connection with the partial waves obtained in Sec. 3.
Since chiral symmetry allows only two independent O(s2) parameters, the three coefficients
d′

00, d′
20, and d′

11 cannot be arbitrary. Expanding a = N/D obtained in the previous section
up to O(s2), we have

a00 ≃
1

16π

{

s

f 2
π

+ s2
[

d′
00

f 2
π

+
11g2

σ

6m4
σ

−
4g2

ρ

3m4
ρ

− 1

16π2f 4
π

log
(−s

µ2

)

]}

, (4.10a)

a20 ≃
1

32π

{

− s

f 2
π

+ s2
[

d′
20

f 2
π

+
2g2

σ

3m4
σ

+
4g2

ρ

3m4
ρ

− 1

32π2f 4
π

log
(−s

µ2

)

]}

, (4.10b)

a11 ≃
1

96π

{

s

f 2
π

+ s2
[

d′
11

f 2
π

− g2
σ

m4
σ

+
3g2

ρ

m4
ρ

− 1

96π2f 4
π

log
(−s

µ2

)

]}

. (4.10c)

Comparing (4.10) with (4.9), we immediately find that the log(−s) terms obtained here are
just as given by the general chiral Lagrangian, although log s terms are absent in (4.10).
The appearance of the former terms is the result of s channel unitarity and analyticity of
the N/D amplitudes. The latter terms, which reflects the crossed channel singularity, are
not incorporated in our procedure which is not exactly crossing symmetric. The effect of
these logarithmic terms is unimportant if we choose µ to be around mρ, since the coefficient
is small. Neglecting the logarithmic and related constant terms, we may identify

3

4
d′

00f
2
π +

11g2
σf

4
π

8m4
σ

−
g2

ρf
4
π

m4
ρ

= 11Lr
1 + 7Lr

2, (4.11a)

3

4
d′

20f
2
π +

g2
σf

4
π

2m4
σ

+
g2

ρf
4
π

m4
ρ

= 4Lr
1 + 8Lr

2, (4.11b)

d′
11f

2
π − g2

σf 4
π

m4
σ

+
3g2

ρf
4
π

m4
ρ

= −8Lr
1 + 4Lr

2. (4.11c)
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This gives one consistency condition for the three subtraction coefficients

5d′
20 = 4(d′

00 + d′
11), (4.12)

which has to hold regardless of the dynamics. In addition, we can impose the dynamics-
dependent relation between the chiral Lagrangian parameters discussed below (4.5) on Lr

1

and Lr
2 in (4.11). We find

1

11
d′

00 = −1

6
d′

11 =
1

4
d′

20 (4.13)

for scalar only (gρ = 0),

1

4
d′

00 = −1

9
d′

11 = −1

4
d′

20 (4.14)

for vector only (gσ = 0), and

4d′
00 = d′

11 = d′
20 (4.15)

for the equal contribution of both (gσ/m2
σ = gρ/m

2
ρ). These conditions reduce the number

of independent subtraction constants to one.

V. COMPARISON WITH DATA

Let us first discuss the P wave amplitude a11. Experimentally, this amplitude is dom-
inated by the ρ resonance. Since the existence of ρ is well established and the parameters
are well measured, we use the mass mρ = 769 MeV and width 151 MeV as inputs (as well
as fπ = 93 MeV). Since we work in the chiral limit, we correct the measured ρ width for the
P wave phase space factor β3 to obtain the ideal width Γρ = 187 MeV. We find that the
result for the S wave is not sensitive to the inclusion of this correction.

The subtraction constant d′
11 may be fixed for a given set of model parameters (gρ, gσ)

by the condition that the unitarized amplitude gives the correct width Γρ. For a unitarized
amplitude a, we define the width by

d

ds
a−1(s)

∣

∣

∣

s=m2
= − 1

mΓ
, (5.1)

where the mass m is defined by a(m2) = i. This gives for the N/D amplitude

Γρ =
Γ0

ρ

ℜe D11(m2
ρ)

, (5.2)

where

Γ0
ρ =

g2
ρmρ

48π
. (5.3)

We thus obtain
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d′
11m

2
ρ = 1 −

g2
ρmρ

48πΓρ

+
m2

ρ

96π2f 2
π

log
m2

ρ

µ2
− 1

16π2

[

g2
σ ℜe d1σ(m2

ρ/m
2
σ) + g2

ρ

(3π2

4
− 257

36

)

]

. (5.4)

In the ‘ρ only’ case, we can drop the term with d1σ in (5.4). In the degenerate case mσ = mρ

with gσ = gρ, (5.4) simplifies to

d′
11m

2
ρ = 1 −

g2
ρmρ

48πΓρ

+
m2

ρ

96π2f 2
π

log
m2

ρ

µ2
−

g2
ρ

16π2

(

π2 − 173

18

)

. (5.5)

This procedure gives a P wave phase shift with the ρ mass and width reproducing the
experimental value. It may be thought as renormalizing the coupling with the ‘on-shell’ ρ
width, though not in the sense of conventional perturbative expansion. Shown in Fig. 1
is the P wave phase shift for three cases, ρ only for KSRF coupling (2.8) and degenerate
ρ–σ for Veneziano (2.12) and KSRF/Weinberg (2.9) couplings. The difference in the ‘bare’
coupling gρ gives very slight change in the phase shift. There is a small difference in the
region away from the resonance depending whether the σ exists or not.

We can now determine the two other subtraction constants d′
00 and d′

20 from the relations
discussed at the end of the previous section: (4.14) for the ρ-only case, (4.15) for the
degenerate case. It is then possible to calculate the two J = 0 phase shifts using these
parameters.

In Fig. 2(a), we show the calculated I = J = 0 phase shift in the ρ only scenario for three
choices of gρ (KSRF/Weinberg, Veneziano, and an intermediate coupling g2

ρ = 0.45m2
ρ/f

2
π).

The experimental data [23,26–28] are also plotted. Although the reflection of the crossed
channel ρ exchange gives a substantial effect, it can account only about half of the observed
phase shift. The phase shift in the degenerate ρ–σ scenario for the same couplings is shown
in Fig. 2(b). The agreement with the data is reasonable. It is rather difficult to determine
the best value of the coupling from this data.

The phase shift for the exotic channel I = 2, J = 0 is shown in Fig. 3 with the ex-
perimental data [29–34]. The ρ exchange [Fig. 3(a)] gives slightly larger phase shifts than
the data. Unlike the I = 0 phase shift, the result is very sensitive to the magnitude of the
coupling, especially for degenerate ρ–σ exchanges [Fig. 3(b)]. The intermediate coupling of
g2

ρ ≃ 0.45m2
ρ/f

2
π reproduces the data quite well.

VI. CONCLUSIONS

We have proposed a general ‘model-independent’ framework of the ππ scattering based
on chiral low-energy expansion and possible resonances in the I = J = 0 and I = J = 1
channels. To cope with the strong interaction of pions, we use the N/D formalism to obtain
partial wave amplitudes which satisfy unitarity, analyticity, and approximate crossing sym-
metry. The result is compared to the experimental phase shift data and we find preference
for a σ resonance with a mass similar to the ρ meson. Without σ, the ρ exchange in the
crossed channel can give substantial reflection in the scalar channel, but the effect is not
large enough to explain the measured phase shift.

In this work, we have examined two clearcut cases with ρ only, and degenerate ρ–σ with
the same coupling strengths. There is certainly some room to improve the fit if we regard
the σ mass and coupling as free parameters. It is also desirable to include the effect of the
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pion mass, which we have neglected in the present study. These questions will be addressed
in a future study.

Theoretically, ππ scattering is the simplest laboratory of the low-energy strong interac-
tion. Unfortunately, no new experiment has been done since early 1980’s and the most recent
result is in some disagreement with older data. (We note that more recent experiments on
the σ meson utilize ‘pomeron-pomeron’ scattering or pp̄ annihilation.) New experiments
with more precision are clearly desirable. Systematic uncertainties may also be reduced.
In fact, the existing data involve some extrapolation because they are extracted from the
reaction πN → ππN . It would be much more welcome if direct beam-beam ππ experiment
can be done.
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[5] R. Kamiński, L. Leśniak, and J.-P. Maillet, Phys. Rev. D 50, 3145 (1994).
[6] G. Janssen, B. C. Pearce, K. Holinde, and J. Speth, Phys. Rev. D 52, 2690 (1995).
[7] N. A. Törnqvist, Z. Phys. C 68, 647 (1995);

N. A. Törnqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996).
[8] V. V. Anisovich, A. A. Kondashov, Yu. D. Prokoshkin, S. A. Sadovsky, and A. V.

Sarantsev, Phys. Lett. B 355, 363 (1995).
[9] M. Svec, Phys. Rev. D 53, 2343 (1996).

[10] M. Harada, F. Sannino, and J. Schechter, Phys. Rev. D 54, 1991 (1996).
[11] S. Ishida, M. Ishida, H. Takahashi, T. Ishida, K. Takamatsu, and T. Tsuru, Prog. Theor.

Phys. 95, 745 (1996);
S. Ishida, T. Ishida, M. Ishida, K. Takamatsu, and T. Tsuru, Prog. Theor. Phys. 98,
1005 (1997).

[12] C. Amsler et al. (Crystal Barrel Collaboration), Phys. Lett. B 342, 433 (1995); ibid.

355, 425 (1995).
[13] D. Alde et al., Z. Phys. C 66, 375 (1995).
[14] D. Alde et al., Phys. Lett. B 396, 350 (1997).
[15] Particle Data Group, R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[16] K. Hikasa and K. Igi, Phys. Rev. D 48, 3055 (1993).,
[17] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255 (1966);

Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).
[18] G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
[19] G. Veneziano, Nuovo Cimento (Ser. X) 57A, 190 (1968).
[20] S. Weinberg, Phys. Rev. Lett. 65, 1177 (1990); Phys. Rev. 177, 2604 (1969).
[21] C. Lovelace, Phys. Lett. 28B, 264 (1968).
[22] J. P. Baton, G. Laurens, and J. Reignier, Phys. Lett. 33B, 528 (1970);

J. T. Carroll et al., Phys. Rev. Lett. 28, 318 (1972);
B. Hyams et al., Nucl. Phys. B64, 134 (1973).

[23] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).
[24] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).
[25] J. Bijnens, G. Colangelo, and J. Gasser, Nucl. Phys. B427, 427 (1994).
[26] G. Grayer et al., Nucl. Phys. B75, 189 (1974).
[27] E. A. Alekseeva et al., Sov. Phys. JETP 55, 591 (1982).
[28] N. M. Cason et al., Phys. Rev. D 28, 1586 (1983).
[29] W. D. Walker et al., Phys. Rev. Lett. 18, 630 (1967).
[30] E. Colton et al., Phys. Rev. D 3, 2028 (1971).
[31] D. Cohen et al., Phys. Rev. D 7, 661 (1973).
[32] M. J. Losty et al., Nucl. Phys. B69, 185 (1974).
[33] W. Hoogland et al., Nucl. Phys. B69, 266 (1974).
[34] J. P. Prukop et al., Phys. Rev. D 10, 2055 (1974).

14



FIGURES

FIG. 1. The I = J = 1 ππ phase shift. The solid curve is for only ρ exchange with

the KSRF coupling, and the dashed (dotted) curve for degenerate ρ and σ with the Veneziano

(KSRF/Weinberg) coupling. The latter two curves are almost indistinguishable.
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FIG. 2. The I = J = 0 ππ phase shift with (a) ρ exchange only; (b) degenerate σ

and ρ exchanges for the KSRF/Weinberg (dashed), Veneziano (dot-dash), and intermediate

g2
ρ = 0.45m2

ρ/2f
2
π (solid) couplings. Some experimental data are also shown.
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FIG. 3. The I=2, J=0 ππ phase shift with (a) ρ exchange only; (b) degenerate σ

and ρ exchanges for the KSRF/Weinberg (dashed), Veneziano (dot-dash), and intermediate

g2
ρ = 0.45m2

ρ/2f
2
π (solid) couplings. Some experimental data are also shown.
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